TD, week 7: Axiomatic semantics

Ex. 1 : Warmup

• Write down carefully the full derivation of

$$\{x = n \land y = m\} \ z \leftarrow x; x \leftarrow y; y \leftarrow z \ \{x = m \land y = n\}$$

according to the rules of HOARE Logic

- What is the meaning of:
 - 1. $\vdash \{\bot\} c \{A\}$? 2. $\vdash \{A\} c \{\top\}$? 3. $\vdash \{\top\} c \{A\}$? 4. $\vdash \{A\} c \{\bot\}$?

Ex. 2 : DIJKSTRA's Dutch National Flag

Suppose that memory locations can take colors Red, White and Blue as values (they can be encoded with numbers, if you prefer). Given an array a, you can express the length length(a) of a and for each $i \leq$ length(a) you can refer to the ith memory location with a[i].

- 1. Write a program DNF which sorts an array of memory locations in such a way that it resembles the Dutch national flag (ie. it is sorted wrt. the order Red < White < Blue).
- 2. Formalize the specification in terms of pre- and post-conditions A and B. Argue that $\vdash \{A\}$ DNF $\{B\}$ holds.
- 3. In order to judge how good is your invariant A, think of the following "buggy" implementation DNF' of the "Dutch National Flag" specification: given the input array x_1, \ldots, x_n , behave as DNF if n < 3, otherwise write Red in x_1 , White in x_2 and Blue in x_3, \ldots, x_n . Does it satisfy A at the beginning and B at the end of the execution? Can you think of different As and Bs which rule out DNF', i.e. such that $\not\vdash \{A\}$ DNF' $\{B\}$?

This should make you reflect on expressiveness of HOARE Logic.

Ex. 3 : Exceptions

Consider the extension of the language with two constructions: raise α and trap α in C_1 with C_2 .

- 1. Explain how to extend the denotational semantics by continuation to these constructs.
- 2. Deduce new rules for the axiomatic semantics.
- 3. Prove the correctness of this new system.