TD3: Functions

Exercise 1:

(a) Are the following functions injective, surjective, bijective?

 $f_1: \mathbb{Z} \to \mathbb{Z}$

 $n\mapsto 2n$

ii. $f_2: \mathbb{Z} \to \mathbb{Z}$

 $n \mapsto -n$

iii. $f_3: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$

iv. $f_4: \mathbb{R} \to \mathbb{R}^+$ $x \mapsto x^2$

v. $f_5:\mathbb{C}\to\mathbb{C}$ $x \mapsto x^2$

(b) Are the following functions injective, surjective, bijective?

i. $f_1: \mathbb{N} \to \mathbb{N}$ $n \mapsto n+1$

ii. $f_1: \mathbb{Z} \to \mathbb{Z}$ $n \mapsto n+1$

iii. $f_3: \mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \mapsto (x+y,x-y)$

Exercise 2:

Let f and g be two mappings from \mathbb{N} to \mathbb{N} defined by

$$f: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto 2n$$

$$g: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto \begin{cases} \frac{n}{2} & \text{si } x \text{ est pair} \\ 0 & \text{sinon} \end{cases}$$

Determine whether f, g, $f \circ g$ et $g \circ f$ are injective, surjective or bijective.

Exercise 3:

Show that *f* defined by

$$f: \mathbb{R} \to \mathbb{R}^{+*}$$

$$x \mapsto \frac{e^x + 2}{e^{-x}}$$

is bijective. Compute the inverse bijection. We could use the substitution $X = e^x$.

Exercise 4:

(a) Let f

$$f: \mathbb{N} \to \mathfrak{P}$$
$$n \mapsto 2n$$

where \mathfrak{P} is the set of even natural numbers Let g

$$g: \mathbb{Z}^{-*} \to \mathfrak{I}$$
$$n \mapsto -2n + 3$$

where \Im is the set of odd natural numbers. Show that f and g are bijections.

(b) We let h

$$h: \mathbb{Z} \to \mathbb{N}$$

$$n \mapsto \begin{cases} f(n) & \text{si } n \geqslant 0 \\ g(n) & \text{sinon} \end{cases}$$

Show that *h* is a bijection.

Exercise 5:

Let

$$f: \mathbb{R} \to \mathbb{C}$$
$$t \mapsto e^{it}$$

Find subsets of \mathbb{R} and \mathbb{C} such that f is a bijection

Exercise 6:

Let

$$f: [1, +\infty[\to [0, +\infty[$$
$$x \mapsto x^2 - 1$$

Determine whether f is injective, surjective, bijective...

Exercise 7: Harder curiosities

- (a) Find a bijection between \mathbb{N}^2 and \mathbb{N} .
- (b) Find a bijection between $\mathcal{P}(\mathbb{N})$ and \mathbb{R} .