TD3: Functions

Exercise 1:

(a) Are the following functions injective, surjective, bijective,		surjective, bijective?
	i.	$f_1: \mathbb{Z} \to \mathbb{Z}$ $n \mapsto 2n$
	ii.	$f_2:\mathbb{Z}\to\mathbb{Z}$
	iii.	$n \mapsto -n$ $f_3 : \mathbb{R} \to \mathbb{R}$
	iv.	$\begin{array}{c} x \mapsto x^{-} \\ f_{4} : \mathbb{R} \to \mathbb{R}^{+} \\ x \mapsto x^{2} \end{array}$
	V.	$f_5: \mathbb{C} \to \mathbb{C}$ $x \mapsto x^2$
(b)	Are the following functions injective	surjective bijective?

- (b) Are the following functions injective, surjective, bijective? i.
 - 1. $f_{1}: \mathbb{N} \to \mathbb{N}$ $n \mapsto n+1$ ii. $f_{1}: \mathbb{Z} \to \mathbb{Z}$ $n \mapsto n+1$ iii. $f_{3}: \mathbb{R}^{2} \to \mathbb{R}^{2}$ $(x, y) \mapsto (x + y, x - y)$

Exercise 2:

Let *f* and *g* be two mappings from \mathbb{N} to \mathbb{N} defined by

$$f: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto 2n$$
$$g: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto \begin{cases} \frac{n}{2} & \text{si } x \text{ est pair} \\ 0 & \text{sinon} \end{cases}$$

Determine whether f, g, $f \circ g$ et $g \circ f$ are injective, surjective or bijective.

Page 1

Exercise 3:

Show that *f* defined by

$$f: \mathbb{R} \to \mathbb{R}^{+*}$$
$$x \mapsto \frac{e^x + 2}{e^{-x}}$$

is bijective. Compute the inverse bijection. We could use the substitution $X = e^x$. **Exercise 4:**

(a) Let *f*

$$f: \mathbb{N} \to \mathfrak{P}$$
$$n \mapsto 2n$$

where \mathfrak{P} is the set of even natural numbers Let *g*

$$g: \mathbb{Z}^{-*} \to \mathfrak{I}$$
$$n \mapsto -2n+3$$

where \Im is the set of odd natural numbers. Show that *f* and *g* are bijections.

(b) We let h

$$\begin{split} h: \mathbb{Z} &\to \mathbb{N} \\ n &\mapsto \begin{cases} f(n) & \text{ si } n \geqslant 0 \\ g(n) & \text{ sinon} \end{cases} \end{split}$$

Show that *h* is a bijection.

Exercise 5:

Let

$$f: \mathbb{R} \to \mathbb{C}$$
$$t \mapsto e^{it}$$

Find subsets of \mathbb{R} and \mathbb{C} such that *f* is a bijection

Exercise 6:

Let

$$f: [1, +\infty[\to [0, +\infty[$$
$$x \mapsto x^2 - 1$$

Determine whether *f* is injective, surjective, bijective...

Exercise 7: Harder curiosities

- (a) Find a bijection between \mathbb{N}^2 and \mathbb{N} .
- (b) Find a bijection between $\mathcal{P}(\mathbb{N})$ and \mathbb{R} .