TD3 : Functions

Exercise 1:

(a) Are the following functions injective, surjective, bijective?
i.

$$
\begin{aligned}
f_{1}: \mathbb{Z} & \rightarrow \mathbb{Z} \\
n & \mapsto 2 n
\end{aligned}
$$

ii.

$$
\begin{aligned}
f_{2}: \mathbb{Z} & \rightarrow \mathbb{Z} \\
n & \mapsto-n
\end{aligned}
$$

iii.

$$
\begin{aligned}
f_{3}: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2}
\end{aligned}
$$

iv.

$$
\begin{aligned}
f_{4}: \mathbb{R} & \rightarrow \mathbb{R}^{+} \\
x & \mapsto x^{2}
\end{aligned}
$$

v.

$$
\begin{aligned}
f_{5}: \mathbb{C} & \rightarrow \mathbb{C} \\
x & \mapsto x^{2}
\end{aligned}
$$

(b) Are the following functions injective, surjective, bijective?
i.

$$
\begin{aligned}
f_{1}: \mathbb{N} & \rightarrow \mathbb{N} \\
n & \mapsto n+1
\end{aligned}
$$

ii.

$$
\begin{aligned}
f_{1}: \mathbb{Z} & \rightarrow \mathbb{Z} \\
n & \mapsto n+1
\end{aligned}
$$

iii.

$$
\begin{aligned}
f_{3}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto(x+y, x-y)
\end{aligned}
$$

Exercise 2:

Let f and g be two mappings from \mathbb{N} to \mathbb{N} defined by

$$
\begin{aligned}
f: \mathbb{N} & \rightarrow \mathbb{N} \\
n & \mapsto 2 n \\
g: \mathbb{N} & \rightarrow \mathbb{N} \\
n & \mapsto \begin{cases}\frac{n}{2} & \text { si } x \text { est pair } \\
0 & \text { sinon }\end{cases}
\end{aligned}
$$

Determine whether $f, g, f \circ g$ et $g \circ f$ are injective, surjective or bijective.

Exercise 3:

Show that f defined by

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R}^{+*} \\
x & \mapsto \frac{e^{x}+2}{e^{-x}}
\end{aligned}
$$

is bijective. Compute the inverse bijection. We could use the substitution $X=e^{x}$.

Exercise 4:

(a) Let f

$$
\begin{aligned}
f: \mathbb{N} & \rightarrow \mathfrak{P} \\
n & \mapsto 2 n
\end{aligned}
$$

where \mathfrak{P} is the set of even natural numbers Let g

$$
\begin{aligned}
g: \mathbb{Z}^{-*} & \rightarrow \mathfrak{I} \\
n & \mapsto-2 n+3
\end{aligned}
$$

where \mathfrak{I} is the set of odd natural numbers. Show that f and g are bijections.
(b) We let h

$$
\begin{aligned}
h: \mathbb{Z} & \rightarrow \mathbb{N} \\
n & \mapsto \begin{cases}f(n) & \text { si } n \geqslant 0 \\
g(n) & \text { sinon }\end{cases}
\end{aligned}
$$

Show that h is a bijection.

Exercise 5:

Let

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{C} \\
t & \mapsto e^{i t}
\end{aligned}
$$

Find subsets of \mathbb{R} and \mathbb{C} such that f is a bijection

Exercise 6:

Let

$$
\begin{aligned}
f:[1,+\infty[& \rightarrow[0,+\infty[\\
x & \mapsto x^{2}-1
\end{aligned}
$$

Determine whether f is injective, surjective, bijective...

Exercise 7: Harder curiosities

(a) Find a bijection between \mathbb{N}^{2} and \mathbb{N}.
(b) Find a bijection between $\mathcal{P}(\mathbb{N})$ and \mathbb{R}.

