April 14, 2020 L1 FDV

Math exam Linear algebra

Allons, courage et confiance!

1 Linear subspaces?

Everything must come with a justification.

- 1. Let $T \in \mathbb{R}^*$. We recall that a function $f : \mathbb{R} \to \mathbb{R}$ is T-periodic if $\forall x \in \mathbb{R}$, f(x+T) = f(x). Is the set of T-periodic function a linear subspace of the linear space of function from \mathbb{R} to \mathbb{R} ?
- 2. Is $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 0\}$ a linear subspace of \mathbb{R}^2 ?
- 3. Is $\{(x,y,z) \in \mathbb{R}^3 \mid x+y=0 \lor x+z=0\}$ a linear subspace of \mathbb{R}^3 ?
- 4. Is the set of divergent sequences a linear subspace of the linear space of real-valued sequences?
- 5. Let $(a,b) \in \mathbb{R}^2$. Is the set of real-valued sequences $(u_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ such that $\forall i \in \mathbb{N}, au_i + bu_{i+1} = u_{i+2}$ a linear subspace of the linear space of real-valued sequences?